Version of Record: https://www.sciencedirect.com/science/article/pii/S1095643318300849 Manuscript_7bc3da466a2a6b42a5cea31193258f5c

Response of the insulin-like growth factor-1 (Igf1) system to nutritional status and growth rate variation in olive rockfish (*Sebastes serranoides***)**

Nicole L. Hack¹, Jackson S. Strobel¹, Meredith L. Journey², Brian R. Beckman², Sean C. Lema¹

¹ Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, California, USA

² NOAA Fisheries, Northwest Fisheries Science Center, Seattle, Washington, USA

Keywords: fish, growth, hormone, binding protein, IGF, somatomedin, nutrition, growth rate, receptor, aquaculture

^{*}*Correspondence:* N. Hack, Biological Sciences Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA, 93407, USA. E-mail: nhack@calpoly.edu

1 Abstract

2 Growth performance in vertebrates is regulated by environmental factors 3 including the quality and quantity of food, which influence growth via endocrine 4 pathways such as the growth hormone (GH) / insulin-like growth factor somatotropic 5 axis. In several teleost fishes, circulating concentrations of insulin-like growth factor-1 6 (Igf1) correlate positively with growth rate, and it has been proposed that plasma Igf1 7 levels may serve as an indicator of growth variation for fisheries and aquaculture 8 applications. This study tested whether plasma Igf1 concentrations might serve as an 9 indicator of somatic growth in olive rockfish (Sebastes serranoides), one species among 10 dozens of rockfishes important to commercial and recreational fisheries in the Northern 11 Pacific Ocean. Juvenile olive rockfish were reared under food ration treatments of 1% or 12 4% wet mass per d for 98 d to experimentally generate variation in growth. Juvenile 13 rockfish in the 4% ration grew 60% more quickly in mass and 22% faster in length than 14 fish in the 1% ration. Plasma Igf1 levels were elevated in rockfish under the 4% ration, 15 and individual Igf1 levels correlated positively with growth rate, as well as with 16 individual variation in hepatic igf1 mRNA levels. Transcripts encoding the Igf binding 17 proteins (Igfbps) *igfbp1a* and *igfbp1b* were also at higher abundance in the liver of 18 rockfish in the 1% ration treatment, while mRNAs for *igfbp5a* and *igfbp5b* were elevated 19 in the skeletal muscle of 4% ration fish. These findings support the use of plasma Igf1 as 20 a physiological index of growth rate variation in rockfish.

21 1. INTRODUCTION

22 Nutritional stress in the form of reduced food quantity or quality affects growth 23 performance in fish, which in turn can impact population-level processes such as 24 recruitment success or reproductive output (Caselle et al., 2010; VenTresca et al., 1996). 25 For populations of marine fishes, the lack of noninvasive metrics for determining spatial 26 and temporal variation in growth performance has limited the ability to predict variation 27 in fish stock reproduction and recruitment. The effects of nutritional stress on somatic 28 growth in fishes, however, are regulated in part via changes in a variety of endocrine 29 pathways including those involved in the somatotropic, thyroid, and glucocorticoid 30 endocrine axes (Picha et al., 2008a; Power et al., 2001; Sadoul and Vijayan, 2016; Won 31 and Borski, 2013), and indices of these endocrine pathways may be useful as biomarkers 32 for assessing growth variation in wild fish stocks as well as in fish culture. 33 The growth hormone (GH)/insulin-like growth factor (Igf) system, in particular, 34 has been shown to regulate somatic growth responses to variation in nutritional status 35 (Fuentes et al., 2013; Picha et al., 2008a; Reindl and Sheridan, 2012). In most vertebrates, 36 insulin-like growth factor-1 (Igf1) is the predominant mediator of growth following 37 activation of the GH/Igf axis (e.g. Duan, 1997; Pérez-Sánchez and Le Bail, 1999; 38 Reinecke et al., 2005). GH secreted from the anterior pituitary binds hepatic GH 39 receptors to stimulate the production of Igf1, which regulates somatic tissue growth by 40 binding Igf1 receptors in target tissues while also exerting negative feedback on pituitary 41 GH production (Duan et al., 2010; Fuentes et al., 2013; Le Roith et al., 2001; Wood et al., 42 2005).

43	Teleost fishes have also evolved at least six types of Igf binding proteins (Igfbps),
44	which themselves evolved into multiple isoforms following gene duplication events in
45	some teleost lineages (Daza et al., 2011; de la Serrana and Macqueen, 2018; Shimizu and
46	Dickhoff, 2017). Igfbps modulate the activity of Igf1 and Igf2 by regulating the amount
47	of Igf hormone available to activate receptors, effectively inhibiting or prompting Igf
48	action. There is also evidence, however, that some Igfbps have their own biological
49	activity and can activate Igf1 receptors or other cell-surface or intranuclear proteins (e.g.,
50	transforming growth factor- β 5 receptor, peroxisome proliferator-activated receptor γ)
51	independent of Igf hormone binding (Baxter, 2015; Chan et al., 2009; Clemmons, 2007,
52	2016; Duan and Xu, 2005; Huang et al., 2003; Jogie-Brahim et al., 2009).
53	For fish experiencing food limitation or deprivation, circulating concentrations of
54	Igf1 decrease while some Igfbps increase, ultimately contributing to reduced muscle and
55	skeletal growth (e.g., Kelley et al., 2001; Picha et al., 2008a; Reinecke, 2010; Shimizu
56	and Dickhoff, 2017). Such declines in circulating Igf1 with food restriction have been
57	observed in a wide variety of fishes, including Mozambique tilapia (Oreochromis
58	mossambicus, Breves et al., 2014; Uchida et al., 2003), Arctic charr (Salvelinus alpinus,
59	Cameron et al., 2007), gilthead sea bream (Sparus aurata, Pérez-Sánchez et al., 1995),
60	and several species of salmonids (Beckman et al., 2004a,b; Bower et al., 2008; Breves et
61	al., 2016; Kaneko et al., 2015; Pierce et al., 2005; Wilkinson et al., 2006). Igfbp
62	expression in fishes has also been found to be responsive to variation in food
63	consumption. Although the number of Igfbp isoforms that have evolved appears to differ
64	across teleost fishes, variation in food availability has been shown to influence expression
65	of the type 1 form of Igfbp (Igfbp1) in several taxa. For instance, Igfbp1 protein levels in

66 blood circulation have been observed to decline in post-smolt coho salmon,

67 Oncorhynchus kisutch, in the hours after feeding (Shimizu et al., 2009), and fasted coho 68 salmon have higher plasma Igfbp1 levels than fish not experiencing food restriction 69 (Shimizu et al., 2006). Mechanistically, at least some of these nutrition-associated 70 changes in Igfbp expression appear to be caused by inhibition of Igfbp1 gene expression. This is supported by the observation of elevated mRNAs encoding the type 1 igfbp gene 71 72 in the liver of Atlantic salmon, Salmo salar, smolts under food restriction (Hevrøy et al., 73 2011). Breves et al. (2016) likewise observed increased hepatic *igfbp1a1* mRNA levels 74 in Atlantic salmon parr fasted for 3 to 10 d.

75 In this study, the relationships between growth rate and the Igf1 system were 76 examined in juvenile olive rockfish, Sebastes serranoides, by regulating food ration to 77 rear fish with differing positive growth rates, and then exploring how growth differences 78 relate to variation in several components of Igf1 signaling. This experimental approach 79 was selected specifically to simulate variable diets and rates of positive growth, rather 80 than complete food deprivation (i.e., fasting), as has been the focus of many prior studies 81 on GH/Igf pathways in other fishes. Rockfishes of genus Sebastes are an important 82 component of commercial and recreational groundfish fisheries in the North Pacific 83 Ocean (e.g., Miller et al., 2014; Parker et al., 2000), and several species are being 84 explored for their economic viability and best rearing practices in mariculture (e.g., Lee, 85 2001; Son et al., 2014). Juvenile olive rockfish were reared for 98 d under differing ration 86 levels, and then examined for differences in growth rate, plasma Igf1, and the relative 87 abundance of gene transcripts encoding igf1, igf2, as well as isoforms of type 1, 2 and 5 88 *igfbps* in the liver and skeletal muscle. The link between somatic growth and transcript

89 expression levels was also examined for Igf1 receptors a (*igf1ra*) and b (*igf1rb*) in

90 skeletal muscle, to further assess how variation in nutritional status and growth alters

91 components of Igf axis signaling in this target tissue.

92

93 2. MATERIALS AND METHODS

94 2.1. Animals

95 2.1.1. Animal collection and husbandry

96 Young-of-the-year juvenile (3-7 mo.) olive rockfish (S. serranoides) were 97 collected from San Luis Bay on the central coast of California, USA, between 5 May and 98 10 July 2016. Fish were collected using a Standard Monitoring Unit for the Recruitment 99 of Fishes (SMURF) (Ammann, 2004), which was deployed under California Polytechnic 100 State University's Center for Coastal Marine Sciences pier facility (35°10'12.3"N 101 120°44'27.2"W) in Avila Beach, California. The SMURF was positioned approximately 102 1 to 3 m below the surface for durations varying from 3 to 11 (4.35 \pm 1.66, mean \pm SD) 103 days.

104 Upon collection, juvenile rockfish were transferred to flow-through 340 L tanks in

105 captivity where they were maintained under ambient salinity (~33‰), temperature

106 (range: 12.4 – 18.9°C), and photoperiod conditions. Fish were fed *ad libitum* daily with

107 commercial fish pellet feed (BioPro2 pellets, 1.5 mm, BioOregon, Longview, WA, USA)

108 for at least 3 weeks prior to the start of the experiment. All procedures were approved by

109 the Institutional Animal Care and Use Committee of California Polytechnic State

110 University (Protocol # 1504).

111

112 2.1.2. Species identification

113	Young-of-the-year S. serranoides can be difficult to identify to the species level
114	using only morphological traits, especially from the sympatric yellowtail rockfish, S.
115	flavidus. Therefore a ~369 bp region of the mitochondrial DNA D-loop control region
116	was amplified and sequenced for each fish used in the experiment to confirm species
117	identity. PCR was performed using degenerate primers to the mtDNA D-loop region
118	developed by Hyde and Vetter (2007). Nucleotide sequences for those primers were as
119	follows: (forward) 5'-CCTGAAAATAGGAACCAAATGCCAG-3', and (reverse) 5'-
120	GAGGAYAAAGCACTTGAATGAGC-3'. Genomic DNA was isolated from skeletal
121	muscle of each fish using the DNeasy® Cell and Tissue Kit (Qiagen, Valencia, CA,
122	USA), and the resulting genomic DNA was amplified in 50 μ l PCR reactions containing
123	25 μl of GoTaq $^{\otimes}$ Colorless Master Mix (Promega Corp., Madison, WI, USA), 18 μl
124	nuclease-free H ₂ O, 1 μ l each of forward and reverse primer (10 mM), and 5 μ l of
125	genomic DNA (69.5-154 ng/ μ l). All reactions were conducted using a thermal profile of
126	95°C for 5 min followed by 38 cycles of 95°C for 30 s, 54°C for 30 s, and 72°C for 1
127	min, and then a 2 min final extension at 72°C. The resulting PCR products were
128	examined on 1.2% EtBr gels before being cleaned (QIAquick® PCR Purification Kit,
129	Qiagen) and Sanger sequenced (Molecular Cloning Labs, South San Francisco, CA,
130	USA). The resulting sequences were then aligned using Sequencher v5.1 software
131	(GeneCodes Corp., Ann Arbor, MI, USA) against existing mtDNA D-loop sequences
132	from GenBank to confirm species identity (S. serranoides, DQ678575 and S. flavidus,
133	<u>DQ678548</u>).

135 2.2. Sequencing of partial cDNAs linked to Igf signaling from olive rockfish

136	2.2.1. Total RNA isolation and reverse transcription
137	Total RNA was extracted from the liver and skeletal muscle tissues of an olive
138	rockfish (86.8 mm standard length [SL], 12.77 g body mass) using TriReagent®
139	(Molecular Research Center, Inc., Cincinnati, OH, USA) and bromochloropropane for
140	phase separation. Extracted RNA was quantified by spectrophotometry $(260:280 = 2.02;$
141	P300 NanoPhotometer, Implen, Inc., Westlake Village, CA, USA) and DNase treated
142	(TURBO DNA-free kit, Life Technologies, Grand Island, NY, USA).
143	First strand cDNA was generated by reverse transcription (GoScript [™] Reverse
144	Transcription System, Promega) in 20 μ l reactions containing 4.88 μ g total RNA
145	template (8 µl), 4 µl 5X buffer, 3 µl MgCl ₂ , 1 µl random primers, 1µl dNTPs, 0.5 µl
146	RNase inhibitor, 1 μ l reverse transcriptase, and 1.5 μ l nuclease-free water. Reactions
147	were incubated at 25 °C for 5 min, 42 °C for 1 h, followed by 70 °C for 15 min to
148	inactivate the reverse transcriptase enzyme.
149	
150	2.2.2. PCR amplification, sequencing, and assembly of partial cDNAs
151	Degenerate primers were used to perform PCR to amplify partial cDNAs
152	encoding <i>igf1</i> , <i>igf2</i> , and the Igf1 receptors <i>igf1ra</i> and <i>igf1rb</i> as well as select <i>igfbps</i> from
153	olive rockfish. Degenerate primers were designed from consensus regions of these genes
154	identified by BLAST search of the genome assemblies for flag rockfish (Sebastes
155	rubrivinctus, GCA_000475215) and tiger rockfish (Sebastes nigrocinctus,
156	GCA_000475235), which were the only <i>Sebastes</i> taxa with genomes available at the time
157	of primer design. Partial cDNAs encoding <i>igf1</i> (accession no. AF481856), elongation

158 factor 1-alpha (*ef1 \alpha*, <u>**KF430623**</u>), and ribosomal protein L17 (*rpl17*, <u>**KF430620**</u>) from

159 Schlegel's black rockfish (Sebastes schlegelii), and igf2 (<u>Y16643</u>) from shorthorn sculpin

160 (Myoxocephalus scorpius) were also used as part of the alignments for primer design.

161 The resulting partial sequences were aligned using Sequencher v5.1 software

162 (GeneCodes Corp.) to find consensus nucleotide regions, and degenerate primers were

163 synthesized by Eurofins Genomics (Louisville, KY, USA).

PCR was performed with degenerate primers in 50 µl reactions containing 25 µl GoTaq® Polymerase Colorless Master Mix (Promega), 2 µl cDNA, 1 µl each of forward and reverse primers (10-50 mM), and 21 µl nuclease-free H₂O. Reactions were amplified under a thermal profile of 95 °C for 2 min, 37 cycles of 95 °C for 30 s, 53 °C for 30 s, and 72 °C for 1 min and 20 s, succeeded by 2 min of 72 °C. PCR products were then tested by gel electrophoresis on 1.2% agrose gels. Any products that were of expected size were cleaned (QIAQuick PCR Kit, Qiagen) and Sanger sequenced (Molecular Cloning Labs).

171

172 **2.3.** Food ration treatments

173 Each olive rockfish was implanted intraperitoneally with a passive integrated 174 transponder (PIT) tag (7 mm, Loligo Systems, Inc., Viborg, Denmark) for individual 175 identification, which allowed for repeated measurements of standard length (SL, mm) 176 and body mass (g) from the same fish. Fish were then systematically assigned to one of 177 six 340 L tanks (0.97 m diameter x 0.48 m depth) to ensure each tank had the same 178 average wet body mass (2.95 \pm 0.12 g, F_{5.46} = 0.0827, p = 0.9946) prior to commencing 179 food ration treatments. Tanks were randomly assigned to one of the following two food 180 rations: 1) high feed (4% mass of feed per fish wet mass; n = 25 fish), or 2) low feed (1%

181 mass of feed per fish wet mass; n = 27 fish) with three replicate tanks per treatment 182 group. The 4% ration was selected based on maximum daily food consumption by 183 juvenile olive rockfish in preliminary feeding trials. Each tank contained 7 to 10 fish to 184 allow for social interactions, and fish were fed daily by hand with 1.5 mm pellet feed 185 (BioPro2 pellets, Bio-Oregon[®]).

186 Fish standard lengths and weights were measured at day 0 (baseline) and then 187 again at time points of day 24, day 48, day 75, day 91, and day 98 of the experimental 188 treatments to quantify body size and growth variation. Feed mass was adjusted following 189 each measurement day to maintain the 1% and 4% ration amounts as fish grew during the 190 experiment. Lengths (SL) and weights were used to quantify body condition factor (K), 191 calculated as (mass/standard length³) * 100 (e.g., Ricker, 1975; Lambert and Dutil, 1997), 192 as well as specific growth rate (SGR), calculated as follows (e.g., Lugert et al., 2014): $SGR = \log(\frac{mass_{final} - mass_{initial}}{total days} \times 100).$ 193

After 98 days of the experimental ration treatments, fish were euthanized (tricaine methanesulfonate, MS222, Argent Aquaculture, LLC, Redmond, WA, USA) and blood was collected by severing the caudal peduncle. Blood was centrifuged at 3,000 x g for 10 min at 4°C, and the resulting plasma was stored at -80°C. Liver and skeletal muscle tissues were also dissected from each fish, frozen immediately in liquid N₂, and kept at -80°C until RNA extraction.

200

201 2.4. Plasma Igf1 quantification

Plasma total (combined bound and unbound to Igfbps) Igf1 concentrations were
 determined with a time-resolved fluoroimmunoassay (TR-FIA) method (Small and

Peterson, 2005), using dissociation enhanced lanthanide fluorescence immunoassay
reagents (DELFIA® reagents, Perkin-Elmer) and anti-recombinant Igf1 antiserum to
barramundi (*Lates calcarifer*) (GroPep BioReagents, Ltd., Thebarton, SA, Australia)
(Degger et al., 2000). This TR-FIA was modified from an RIA described by Shimizu and
colleagues (2000), and is described in detail in Ferriss et al. (2014). This TR-FIA was
validated previously for use in *Sebastes* rockfishes. All samples were run in duplicate.

211 2.5. Quantification of Igf system gene transcripts

212 The relative abundance of gene transcripts for *igf1*, *igf2*, and isoforms of Igf 213 binding proteins type 1 (*igfbp1a*, and -1b), type 2 (*igfbp2a*, and -2b), and type 5 (*igfbp5a*, 214 and -5b) were quantified in the liver and skeletal muscle using real-time quantitative 215 reverse transcription PCR (qRT-PCR). In addition, the relative abundance of Igf1 216 receptors a (*igfra*) and b (*igfrb*) was also measured in skeletal muscle. 217 Total RNA was extracted from liver and muscle tissues using TriReagent® (Molecular Research Center, Inc.) and bromochloropropane. RNA was subsequently 218 219 DNase treated (TURBO DNA-free kit, Life Technologies) and quantified by 220 spectrophotometry ($260:280 \ge 2.02$, P300 NanoPhotometer, Implen, Inc.). RNA from each fish was then diluted to 68.6 ng· μ l⁻¹ for liver and 20.8 ng· μ l⁻¹ for skeletal muscle to 221 222 standardize total RNA concentrations prior to reverse transcription. RNA was reverse 223 transcribed in 24 µl reactions with 2.86 µg (liver) or 0.87 µg (muscle) DNase-treated 224 RNA template (10 µl), 4.8 µl 5X buffer (GoScriptTM, Promega), 3.775 µl MgCl₂ (3.9 mM 225 concentration), 1.2 µl dNTPs (0.5 mM each dNTP), 1.2 µl random primers, 0.125 µl 226 RNase (Recombinant RNasin® Ribonuclease Inhibitor, Promega), 0.9 µl GoScriptTM

228 reactions were conducted at 25°C for 5 min, 42°C for 60 min, and then completed with a 229 reverse transcriptase inactivation at 70°C for 15 min. 230 Primers for SYBR Green qRT-PCR were designed to the protein coding regions 231 of each olive rockfish partial cDNA using the PrimerQuest tool of Integrated DNA 232 Technologies (Coralville, IA, USA). Primers were also designed to amplify efla and 233 rpl17 for use as reference genes. All primers were synthesized by Eurofins Genomics 234 (Louisville, KY). 235 Quantitative real-time PCR assays were conducted in 16 µl reactions with 8 µl 236 iTaq[™] Universal SYBR® Green Supermix (BioRad Laboratories, Inc., Hercules, CA, 237 USA), 1 µl of both forward and reverse primers (10 mM), 4.5 µl nuclease-free H₂O, and 238 1.5 µl cDNA template. All SYBR Green qRT-PCR reactions were run on a CFX 239 ConnectTM Real-Time PCR System (Bio-Rad Laboratories, Inc.) under a thermal profile 240 of 95°C for 2 min, 42 cycles of 95 °C for 5 s and 60 °C for 30 s, followed by 65°C for 15 241 s. For each gene, a standard curve was made using a pool of RNA extracted from tissues 242 of fish collected from both ration treatments. This pooled sample was serially diluted, 243 and each standard concentration was assayed in triplicate. Correlation coefficients (r²) for the standard curves were always greater than $r^2 = 0.96$. Melt curve analyses were also 244 245 performed to confirm amplification of a single product and the absence of primer-dimers 246 during each quantitative PCR run. PCR efficiencies for each gene were calculated using the equation: $\% efficiency = [10^{(-1/slope)} - 1] \times 100$; mean efficiencies are 247 provided in **Supplemental Materials, Table S2**. For each gene, relative mRNA levels 248 249 were calculated using the standard curve and normalized to the geometric mean of *rpl17*

reverse transcriptase (Promega), and 2 µl nuclease-free water. Reverse transcription

227

and $ef-1\alpha$ mRNA expression, which did not vary within a tissue between ration groups. Abundance values of each gene of interest were then expressed as a relative level by dividing the resulting values by the mean value of the low treatment group. Specificity of the primer sets was also assessed by Sanger sequencing select PCR products for each gene.

255

256 2.6. Statistical Analyses

257 ANCOVA models were used to compare the length-mass body size relationships 258 between ration treatments at the start (day 0) and end (day 98) of the experiment. 259 Repeated-measures ANOVA models were then used to test for effects of ration treatment 260 on body mass, length, and condition factor (K) over the 98 d experimental period. There 261 were no within treatment tank effects, which was found by comparing ANOVA models 262 with and without 'tank' as a fixed effect, so 'tank' was not considered in subsequent 263 analyses. Student t-tests were then used to test for differences in mass, length, and 264 condition factor between the high and low food ration treatments on each measurement 265 day. Plasma Igf1 concentrations were compared using t tests, and Pearson's correlations 266 were used to examine relationships between Igf1 and both mass-specific SGR and length-267 specific SGR for all fish combined. Associations between plasma Igf1 concentrations and 268 both hepatic and muscle *igf1* mRNA levels for all fish, as well as within treatments, were 269 tested using Pearson's correlations. All statistics were conducted using R v3.3.2 through 270 RStudio v1.0136.

271

272 **3. RESULTS**

273 3.1. Identification of partial cDNAs from olive rockfish

274	Degenerate primer PCR amplified partial cDNAs encoding <i>igf1</i> (362 bp,
275	GenBank accession no. MG366820) and <i>igf2</i> (451 bp, MG366821) for olive rockfish, as
276	well as cDNAs for the following Igfbps: <i>igfbp1a</i> (679 bp, <u>MG366822</u>), <i>igfbp1b</i> (702 bp,
277	<u>MG366823</u>), <i>igfbp2a</i> (519 bp, <u>MG366824</u>), <i>igfbp2b</i> (678 bp, <u>MG366825</u>), <i>igfbp5a</i> (200
278	bp, MG366826), and <i>igfbp5b</i> (707 bp, MG366827). Partial cDNAs were also sequenced
279	for the Igf1 receptors a (<i>igf1ra</i> , 426 bp, <u>MG366828</u>) and b (<i>igf1rb</i> , 340 bp, <u>MG366829</u>).
280	BLAST analyses using GenBank (https://www.ncbi.nlm.nih.gov/) combined with
281	phylogenetic analysis of the deduced amino acid sequences for the partial cDNAs
282	encoding Igfbps confirmed the identity of these cDNAs.
283	Partial sequences encoding 416 bp of the cDNA for elongation factor 1- α (<i>efl</i> α)
284	$(\underline{MG366830})$ and 399 bp of a cDNA for 60S ribosomal protein L17 (<i>rpl17</i>) ($\underline{MG366831}$)
285	were also amplified and sequenced from olive rockfish for use as internal reference genes
286	in real-time quantitative reverse-transcription PCR.
287	
288	3.2. Ration differences generate variation in growth rate
289	There were no significant differences in body size parameters (mass, standard
290	length, or condition factor) between rockfish in the two ration treatments at the start of
291	the experiment (day 0, $p \ge 0.24$), prior to commencing feeding. This equivalence of body
292	sizes between ration treatments on day 0 is illustrated as similarity in the length-mass
293	relationships between treatment groups (Fig. 1) (ANOVA model: treatment*length
294	interaction, $p = 0.842$). However, rockfish in the 4% ration treatment grew larger than
295	fish in the 1% ration over the course of the experiment, and by the end of the experiment

296	on day 98, rockfish reared under the 4% ration showed a different length-mass
297	relationship than fish under the 1% ration (Fig. 1) (ANOVA model: treatment*length
298	interaction, $F_{1,49} = 9.15$, p = 0.0040). Fish in the 4% ration were significantly larger in
299	mass ($F_{1,50}$ = 58.12, p < 0.001) and body condition factor ($F_{1,50}$ = 28.65, p < 0.0001) after
300	24 d, and were larger in SL ($F_{1,50}$ = 27.46, p < 0.0001) after 48 d (Fig. 2), compared to
301	fish in the 1% ration treatment. Rockfish in the 4% ration treatment remained larger in
302	mass and length and also had a higher condition factor until the end of the experiment on
303	day 98. As expected by those body size differences, fish in the 4% ration treatment
304	ultimately exhibited greater mass-specific SGR ($F_{1,50}$ = 146.77, p < 0.0001) and length-
305	specific SGR ($F_{1,48}$ = 59.37, p < 0.0001) compared to fish in the 1% ration treatment (Fig.
306	3).

307

308 3.3. Effect of ration amount on plasma Igf1 concentrations

309 Plasma Igf1 concentrations were significantly higher in rockfish from the 4% 310 ration treatment ($F_{1,48} = 9.509$, p = 0.0034) (Fig. 4). When looking at all fish, mass and 311 length specific SGR were both correlated positively to plasma Igf1 levels (Fig. 5), whereas Igf1 concentrations showed no relationship with change in body condition (r = -312 313 0.042, p = 0.769).

314 Mass-specific SGR amongst all fish was more strongly correlated than length-315 specific SGR but both correlated to plasma Igf1 concentrations for multiple time periods 316 (Table 1). All time intervals for mass-specific SGR were correlated to plasma Igf1 except 317 the last 7 days (day 91-98, Table 1). Excluding the last 7 days, SGR for mass became more strongly correlated to Igf1 at later time periods. Length-specific SGR was 318

319 significantly correlated to Igf1 concentrations at every time point. There were no

320 significant correlations within ration treatments.

321

322 3.4. Regulation of mRNAs encoding Igfs and Igfbps in liver

323 There was no difference between treatments for transcripts of *igf1* ($F_{1,45} = 1.663$, p 324 = 0.2038) or *igf2* (F_{1,45} = 1.366, p = 0.2487) in the liver (**Fig. 6A**). Of the binding 325 proteins, igfbp1a (F_{1,44} = 11.63, p = 0.0014) and igfbp1b (F_{1,45} = 24.30, p < 0.0001) had 326 the only differences between treatments with approximately 3 and 4-fold greater 327 abundance, respectively, in fish from the low ration treatment (Fig. 6B). Liver *igfbp2a*, 328 *igfbp2b, igfbp5a* and *igfbp5b* did not differ in relative mRNA abundance between ration 329 treatments. Plasma Igf1 and hepatic *igf1* mRNA correlated strongly across all fish (r = 330 331 0.5447, p = 0.0001; Fig. 7). Within treatments, Igf1 also correlated to liver *igf1* with the 332 low ration having a stronger correlation (r = 0.7031, p = 0.0005; Fig. S1A, Supplemental **Materials**) than the high ration (r = 0.5537, p = 0.0050; Fig. S1B). No significant 333 334 correlations were observed between plasma Igf1 and mRNA levels for *igfbp1a* (r = -335 0.119, p = 0.44), *igfbp1b* (r = -0.227, p = 0.14), or any other Igfbp gene transcript in the 336 liver (p = 0.50-0.89). Several correlations were, however, observed in the liver between 337 mRNA levels for different transcripts involved in Igf1 signaling (Table S3, 338 Supplemental Materials). 339

340 3.5. Ration effects on Igf system-associated mRNAs in skeletal muscle

341 Transcripts encoding *igf1* were significantly more abundant in the skeletal muscle 342 of rockfish in the high ration treatment than in the low ration ($F_{1,44} = 30.50$, p < 0.0001) 343 but *igf2* did not differ between treatments ($F_{1,44} = 3.468$, p = 0.0692; **Fig. 8A**). While 344 *igfbp1a*, *igfbp1b*, *igfbp2a* and *igfbp2b* mRNA levels did not show any differences 345 between treatments, igfbp5a (F_{1,44} = 5.963, p = 0.0187) and igfbp5b (F_{1,45} = 9.919, p = 346 (0.0029) levels were significantly higher in the high ration treatment compared to 347 respective low treatment fish (Fig. 8B). None of the examined Igf1 receptors showed any 348 difference in mRNA abundance between treatments (Fig. 8C). 349 Muscle *igf1* mRNA abundance correlated to plasma Igf1 when grouping all fish (r 350 = 0.4880, p = 0.0007; Fig. 9). This relationship appears driven largely by rockfish in the 351 4% ration treatment (r = 0.4144, p = 0.0493; Fig. S2A, Supplemental Materials), as the relationship was not significant when fish in the low treatment were analyzed separately 352 353 (r = 0.1487, p = 0.509; Fig. S2B). Relatively few correlations were observed between 354 relative mRNA levels for different transcripts within the muscle tissue (Table S4, 355 Supplemental Materials). 356 357 4. Discussion

358 4.1. Relationship between plasma Igf1 and growth rate

In the present study, the relationship between circulating Igf1 and growth rate was examined in olive rockfish, one of several *Sebastes* rockfishes important as recreational and commercial groundfish fisheries in the Northern Pacific Ocean. By feeding groups of juvenile olive rockfish two different ration amounts (1% or 4% wet mass per d) for 98 d,

363 differences in SGR were generated, with rockfish given the 4% ration growing 60% 364 faster in mass and 22% more rapidly in length per day compared to fish in the 1% ration. 365 Juvenile olive rockfish experiencing faster growth under the 4% ration treatment 366 had higher plasma Igf1 concentrations than fish under the 1% ration. Similar differences 367 in circulating Igf1 linked to variation in food intake have been observed previously in 368 other fishes including tilapia (Breves et al., 2014; Uchida et al., 2003), sea bream (Pérez-369 Sánchez et al., 1995), and salmonids (e.g., Beckman et al., 1998, 2004a; Breves et al., 370 2016; Pierce et al., 2005; Wilkinson et al., 2006; for review, see Beckman, 2011). These 371 changes in circulating Igf1 appear to result from altered hepatic Igf1 production, as olive 372 rockfish displayed a positive correlation between plasma Igf1 and hepatic igf1 mRNA 373 levels. In other studies, negative relationships between plasma GH and Igf1 levels have 374 been observed in food restricted fish, while positive correlations between these hormones 375 were present in fed individuals (e.g., Fox et al., 2006). Those shifting relationships 376 between circulating GH and Igf1 concentrations with differing food intake suggest that 377 nutrition-associated changes in plasma Igf1 result in part from changes in GH stimulation 378 of liver Igf1 production. Supporting that idea, fasting has been shown to reduce GH 379 binding in the liver, implying an increase in hepatic GH resistance in fish experiencing 380 food limitation (Gray et al., 1992; Pérez-Sánchez et al., 1994; see also Bergan-Roller and 381 Sheridan, 2018).

Individual variation in plasma Igf1 in olive rockfish also correlated positively with individual variation in growth rate, supporting the previously proposed idea that circulating Igf1 may serve as a physiological index of growth rate in fish (Beckman, 2011; Picha et al., 2008a). The strength of this correlation between plasma Igf1 and

386 growth rate in olive rockfish varied from approximately r = 0.29 to 0.43, depending on 387 whether SGR was measured using body length or mass, and generally was observed as 388 more robust with measurements of mass-specific SGR.

389 Similar to our findings here, Igf1 has previously been found to correlate positively 390 with growth rate across a variety of teleosts (e.g., Beckman, 2011; Beckman et al., 391 2004a,b; Kaneko et al., 2015; Lankford and Weber, 2006; Uchida et al., 2003). In olive 392 rockfish, plasma Igf1 concentrations correlated over the last 7 d of growth to length-393 specific SGR but not to mass-specific SGR, despite mass-specific SGR showing strongly 394 correlative relationships at all other measured time intervals (**Table 1**). In contrast, other 395 studies have observed Igf1 concentrations having the strongest correlation over the most 396 recent growth history (e.g., Beckman et al., 2004a). Given that somatic growth rates can 397 vary due to a variety of ecological factors (e.g., temperature, photoperiod, etc.; Beckman, 398 2011) in addition to food ration amount—and that the relative effects of such factors on 399 growth can vary among species (Beckman, 2011; Picha et al., 2008a)—any one of several 400 factors may have contributed to the weaker statistical relationship between mass-specific 401 SGR and plasma Igf1 during the last measurement time interval (day 91-98). Such 402 environmental influences are often linked to variation in feeding efficiency, which can 403 lead to changes in growth even with equivalent diet composition and food consumption 404 rates (Mingarro et al., 2002; Vera Cruz et al., 2006). In Pacific rockfishes, growth rates 405 have been demonstrated to change with fish age (Tsang et al., 2007), and both 406 temperature and body size can also impact growth in rockfishes (e.g., Boehlert and 407 Yoklavich, 1983; Kamimura et al., 2012). Due to changes in water temperature, growth in fish typically slows in the fall season in conjunction with lowered plasma Igf1 levels 408

409 (Larson et al., 2001; Mingarro et al., 2002). Given that the last sampling date (day 98)
410 was 21 October 2016 – and that fish were reared under ambient photoperiod and ocean
411 temperatures – the absence of a significant correlation between Igf1 and mass-specific
412 SGR across the final 7 d of the experimental period may have resulted from a slowing of
413 growth with the transition into the fall season.

414

415 4.2. Growth-related variation in hepatic and muscle Igf1 and Igf2 gene expression

416 Liver *igf1* mRNAs have been shown to decrease in fish experiencing restricted

417 food or complete food deprivation (fasting) in a variety of species including salmon (O.

418 *tshawytscha*, Pierce et al., 2005; *O. kisutch*, Duan and Plisetskaya, 1993), Nile tilapia (*O.*

419 *niloticus*, Vera Cruz et al., 2006), rainbow trout (*O. mykiss*, Monserrat et al., 2007),

420 grouper (*Epinephelus coioides*, Pedroso et al., 2006), channel catfish (*Ictalurus*

421 *punctatus*, Small et al., 2006; Peterson and Waldbieser, 2009), rabbitfish (Siganus

422 guttatus, Ayson et al., 2007), and yellowtail (Seriola quinqueradiata, Kawanago et al.,

423 2014). Studies in other fishes, such as Mozambique tilapia (Breves et al., 2014) and

424 Atlantic salmon (Breves et al., 2016), however, did not observe any change in hepatic

425 *igf1* mRNAs when food was withheld entirely. Hepatic *igf1* similarly failed to track

426 changes in plasma Igf1 in masu salmon (O. masu) experiencing a period of compensatory

427 growth (Kawaguchi et al., 2013). That observed variation in liver *igf1* mRNA responses

428 to feeding variation may arise from several interacting factors including taxonomic

429 variation, the duration and degree of food restriction, developmental or life stage

430 variation in GH induction of liver *igf1* expression, or interactions from other hormones

431 that can influence igf1 mRNA expression including cortisol, thyroid hormones, insulin,

and somatostatin (e.g., Butler and LeRoith, 2001; Schmid et al., 2003; Pierce et al., 2005;
Leung et al., 2008; Sheridan and Hagemeister, 2010). The present results with olive
rockfish correspond with those later studies, as liver *igf1* mRNA levels were unaffected
by the experimentally generated differences in ration amount and growth rate. Even so,
individual variation in hepatic *igf1* mRNA levels was found to correlate with plasma Igf1
in olive rockfish, as has been seen in other fish experiencing varied positive growth
(Gabillard et al., 2003; Pierce et al., 2005).

439 Several interacting mechanisms may underlie the nutrition-associate changes in 440 liver *igf1* mRNA levels observed here in rockfish. First, nutritional status can influence 441 GH receptor expression (Gray et al., 1992; Small et al., 2006; Norbeck et al., 2007), 442 which ultimately may contribute to reduced GH stimulation of liver Igf1 production and 443 release (e.g., Gabillard et al., 2006; Pierce et al., 2005). For instance, several fishes 444 undergoing fasting have been shown to have reduced hepatic GH receptor mRNA levels 445 (Norbeck et al., 2007; Peterson et al., 2009; Picha et al., 2008b; Saera-Vila et al., 2005; 446 Small et al., 2006), suggesting that that nutrition-associated declines in circulating Igf1 447 levels may be due in part to reduced GH stimulation of liver Igf1. In mammals, reduced 448 food intake has also been observed to increase liver production of fibroblast growth 449 factor 21 (FGF21) (Inagaki et al., 2007). FGF21 inhibits GH-mediated phosphorylation 450 of signal transducers and activators of transcription 5 (STAT5) regulatory proteins (e.g., 451 Beauloye et al., 2002; Inagaki et al., 2008), which regulate the induction of *igf1* gene 452 expression following liver GH receptor activation (e.g., Herrington et al., 2000). While 453 the specific mechanisms whereby different planes of food availability altered plasma Igf1

and hepatic *igf1* gene expression were not examined in the present study in olive 455 rockfish, future work in fishes should explore those mechanisms in more detail. 456 Although the liver is the dominant tissue of Igf1 synthesis, peripheral Igf1 457 production also appears to be important for regulating growth via autocrine or paracrine 458 effects in some tissues (e.g., Firth and Baxter, 2002; Franz et al., 2016), and extrahepatic 459 *igf1* expression can be regulated in a tissue-specific pattern (Eppler et al., 2010; Fox et 460 al., 2010). Liver Igf1-knockout mice continue to exhibit normal growth (Le Roith et al., 461 2001), suggesting that locally produced Igf1 may play an important, underappreciated 462 role in regulating somatic growth in vertebrates. Just as in the liver, extrahepatic *igf1* 463 mRNA abundance changes in fish undergoing food deprivation followed by refeeding 464 (e.g., Fox et al., 2010; Norbeck et al., 2007; Peterson and Waldbieser, 2009; Terova et al., 465 2007).

454

466 In the current study, rockfish from 4% ration treatments had elevated relative *igf1* 467 mRNA levels in skeletal muscle. While the functional significance of muscle Igf1 468 production in fishes is not clear, muscle *igfl* transcription has been shown to respond to 469 acute changes in food intake in Atlantic salmon, rainbow trout, and tilapia; in these 470 species, muscle *igf1* mRNA levels change within days after initiating fasting (Bower et 471 al., 2008; Breves et al., 2016; Fox et al., 2010; Montserrat et al., 2007; Picha et al., 472 2008b) and refeeding (Chauvigné et al, 2003; Fuentes et al., 2012; Gabillard et al., 2006). 473 In fine flounder, *Paralichthys adspersus*, nutrition-related changes in muscle *igf1* 474 expression were shown to result in part from changes in GH stimulation (Fuentes et al., 475 2012). In that work, Fuentes and colleagues (2012) found that nutrition regulates GH 476 receptor subtype expression in muscle, and that the ratio of full-length GH receptor to

477 truncated GH receptor subtypes in muscle shifts depending on nutritional status, therein 478 generating differences in GH-mediated *igf1* transcription. What is more, both Igf1 and 479 Igf2 have also been shown to increase *igf1* transcription in cultured myocytes from 480 gilthead sea bream (Azizi et al., 2016), so it's possible that the higher muscle igfl mRNA 481 levels observed in rockfish from the 4% ration may be a result of both greater GH 482 stimulation associated with the higher nutritional status of these fish (i.e., higher food 483 consumption) and enhanced Igf1 stimulation of muscle *igf1* gene expression. 484 While some studies in teleost fishes have observed notable responses of Igf2 485 signaling with nutritional deprivation (e.g., Gabillard et al., 2006), *igf2* mRNA levels in 486 olive rockfish did not vary in either liver or muscle when fish were reared under different 487 rations. Montserrat and colleagues (2007) similarly did not observe any changes in *igf2* 488 mRNA levels in the liver or muscle of rainbow trout experiencing fasting. Notably, 489 however, the majority of studies that examined igf2 transcriptional responses to nutrition 490 have focused on extreme nutritional deprivation (i.e., fasting) followed by refeeding 491 (Bower et al, 2008; Chauvigné et al, 2003; Peterson and Waldbieser, 2009), and as such 492 are not entirely comparable to our current study that examined Igf signaling responses to 493 differing rates of positive growth.

494

495 4.3. Responses of Igfbp and Igf1 receptor mRNA abundance to ration amount

Igfbps are critical for modulating the effects of Igf1 and Igf2, and the ratio of
Igf:Igfbp in circulation regulates hormone availability for receptor binding (Clemmons,
2016). The expression of Igfbp1a (regarded as the 28-32 kDa Igfbp protein in fishes) and
Igfbp1b (regarded as the 20-25kDa Igfbp) changes with nutritional status in some teleosts

500 (Shimizu et al., 2006; Picha et al., 2008a), with both Igfbp1a and 1b generally showing 501 elevated hepatic and plasma expression under nutritional restriction (Shimizu and 502 Dickhoff, 2017). Juvenile olive rockfish raised under the 1% ration treatment followed 503 that same pattern with a greater relative abundance of *igfbp1a* and *igfbp1b* transcripts in 504 the liver compared to fish in the 4% ration group. Those higher hepatic *igfbp1a* and *1b* 505 mRNAs agree with previous experimental findings in fishes that experienced complete 506 food deprivation (fasting) including Atlantic salmon (Breves et al., 2016), masu salmon 507 (Kawaguchi et al., 2013), and Mozambique tilapia (Breves et al., 2014). 508 Given the lack of response in the rockfish liver from all other Igf binding proteins, 509 *igfbp1a* and *igfbp1b* appear to be most sensitive to modulation by changes in nutritional 510 status, and therein may be contributing to differences in growth under food limitation. In 511 juvenile salmon, circulating Igfbp1a and Igfbp1b protein levels both correlate inversely 512 with growth rate (Kawaguchi et al., 2013). In light of that relationship, Kawaguchi and 513 coworkers (2013) proposed that plasma Igf1 may serve as a reliable, positive indicator of 514 growth, while plasma Igfbp1b may be a negative indicator. Despite not finding any 515 significant correlations between individual hepatic *igfbp1a* or *igfbp1b* mRNA levels and 516 individual growth rate in olive rockfish, it is still possible that *igfbp1a* and *igfbp1b* levels 517 are more sensitive to shifts in food consumption than plasma Igf1 under some conditions 518 of nutritional stress (e.g., Picha et al., 2008a), given the observed magnitude of hepatic 519 *igfbp1* mRNA responses to food limitation in rockfish.

520 Generally, transcripts encoding *igfbp1a* and *igfbp1b* are at lower abundance in 521 skeletal muscle than in liver (Bower et al., 2008; Bower and Johnston, 2010; Breves et 522 al., 2014; Fuentes et al., 2013; Safian et al., 2012). Because of this, *igfbp1* mRNAs are

523 less frequently measured in muscle tissues from teleosts exposed to food manipulation 524 experiments, and considerably less is known about the role of muscle Igfbp1 in regulating 525 growth of muscle tissue. In the current study in olive rockfish, muscle *igfbp1a* and 526 *igfbp1b* mRNA levels were unaffected by positive growth variation induced by 527 differences in food ration, even though both transcripts were detectable in the muscle. 528 Notably, there are conflicting findings concerning the regulation of *igfbp1* gene 529 expression in fish skeletal muscle, even across studies using the same species. In Atlantic 530 salmon, for instance, some studies have been unable to detect *igfbp1* mRNAs in 531 homogenized fast-twitch (white) muscle tissue or isolated, cultured myocytes (Bower et 532 al., 2008; Bower and Johnston, 2010). Other work with this species, however, not only 533 detected *igfbp1* transcript expression in this same tissue, but also observed expressional 534 regulation in response to temperature (Hevrøy et al., 2015). These incongruent findings 535 suggest that muscle *igfbp1* expression may vary with several factors besides nutritional 536 status, such as development age or ecological conditions (e.g., temperature, salinity, 537 season; see Shimizu and Dickhoff, 2017). Depending on the experimental testing 538 conditions, such environmental influences may interact to obscure clear patterns of *igfbp1* 539 regulation in muscle. 540 Similar to other teleosts, olive rockfish also transcribe two distinct *igfbp2* mRNAs 541 (*igfbp2a* and *igfbp2b*). In teleosts, *igfbp2* transcripts are found at the highest levels in 542 liver and white muscle (e.g., Safian et al., 2012), and Igfbp2 has been proposed to

543 function as the primary carrier of Igfs in blood circulation in salmonids (de la Serrana and

- 544 Macqueen, 2018; Shimizu and Dickhoff, 2017). In the rockfish studied here, liver and
- 545 muscle *igfbp2a* and *igfbp2b* mRNA levels were unaffected by food ration. In other

546	teleosts, however, regulation of both hepatic and muscle <i>igfbp2</i> transcripts has been
547	observed in fasting/refeeding experimental manipulations (Chen et al., 2014; Duan et al.,
548	1999; Gabillard et al., 2006; Safian et al., 2012). Hepatic <i>igfbp2</i> mRNA expression is
549	elevated by GH and suppressed by prolonged food deprivation (Duan et al., 1999; Chen
550	et al., 2014; Gabillard et al., 2006; Kelley et al., 2001; Safian et al., 2012), implying that
551	hepatic Igfbp2 is downregulated along with liver Igf1 production under severe nutritional
552	stresses, possibly to maintain the bound:unbound ratio of Igfs in plasma when fish
553	experience reduced food intake. Given that the experimental treatments with rockfish
554	involved differences in ration amount and not complete food deprivation/fasting, it
555	appears that the severity of nutritional stress in the 1% ration treatment was insufficient to
556	induce changes in Igfbp2 gene expression. Future studies, however, should examine
557	whether a more severe fasting stress would result in altered hepatic or muscle expression
558	of <i>igfbp2a</i> or <i>igfbp2b</i> mRNAs in rockfish, as has been observed in other fishes.
559	The Igf binding protein 5 (Igfbp5) is also expressed in many tissues and has been
560	linked to bone growth (Duan and Xu, 2005), skeletal muscle differentiation (Ren et al.,
561	2008; Safian et al., 2012), and juvenile development (Salih et al., 2004). Transcripts
562	encoding <i>igfbp5a</i> and <i>igfbp5b</i> are present in the liver of many teleost fishes (Breves et al.,
563	2014; Gabillard et al., 2006; Kamangar et al., 2006; Safian et al., 2012; Pedroso et al.,
564	2009; Zheng et al., 2017), but have generally not been shown to be sensitive in this tissue
565	to fasting stress (e.g., Breves et al., 2014; Gabillard et al., 2006). In skeletal muscle,
566	however, Igfbp5 gene transcription does appear to be regulated by nutrition (Bower et al.,
567	2008; Bower and Johnston, 2010; Gabillard et al., 2006; MacQueen et al., 2011; Zheng et
568	al., 2017; see Amaral & Johnston, 2011). For instance, in fine flounder, muscle igfbp5

569	mRNAs were downregulated while fasting and upregulated during refeeding (Safian et
570	al., 2012). Bower and Johnston (2010) also observed that an enhanced amino acid diet
571	increased igfbp5 mRNAs in cultured myotube cells from Atlantic salmon, suggesting that
572	nutritional composition alone can influence muscle Igfbp5 expression. Olive rockfish
573	showed elevated mRNA levels for both <i>igfbp5a</i> and <i>igfbp5b</i> in muscle, supporting those
574	previously observed effects of food intake on Igfbp5 expression in this tissue in other
575	fishes. While the function and mechanism of action for Igfbp5 regulation in muscle
576	remains unclear, Igfbp5 proteins appear to be important for myogenesis and muscle
577	growth in teleost fishes (e.g., de la Serrana and Macqueen, 2018).
578	In target tissues such as skeletal muscle, the effects of Igf1 on cell proliferation,
579	differentiation, and migration occur via Igf receptors, which activate intracellular
580	transduction cascades including the phosphatidylinositol 3-kinase (PI3K)-Akt pathway
581	(Dupont and LeRoith, 2001). Partial cDNAs were amplified and sequenced encoding two
582	Igf1 receptors (<i>igf1ra</i> and <i>igf1rb</i>) from olive rockfish, and although juvenile rockfish
583	under differing food rations did not show altered levels of either Igf1 receptor mRNA in
584	liver or muscle, nutritional stresses such as fasting have been shown to influence Igf1r
585	transcript levels in other fishes (Bower et al., 2008; Chauvigné et al., 2003). Multiple Igf1
586	receptors have been detected in other fishes (Azizi et al., 2016; Chan et al., 1997; Escobar
587	et al., 2011; Greene and Chen, 1999), and different Igf1r forms can exhibit dissimilar
588	patterns of tissue expression in some contexts (e.g., Maures et al., 2002). In rainbow
589	trout, for instance, muscle igflra mRNA abundance increased under fasting and again
590	decreased during re-feeding, while <i>igf1rb</i> was unresponsive to these same changes
591	(Chauvigné et al., 2003). Azizi and coworkers (2016) recently found that Igf1

downregulated both *igf1ra* and *igf1rb* transcripts while Igf2 upregulated only *igf1rb* in culture myocytes from sea bream, indicating these Igf1 receptors may have different mechanisms of hormonal regulation. Combined, such evidence suggests functional specialization of the two teleost Igf1r types, at least in salmonids; what those different functions might be, however, remains unclear at this time in teleost fishes.

597

598 **5.** Conclusions

599 Similar to other teleost fishes, individual variation in circulating Igf1 600 concentrations were found to correlate positively with variation in SGR in juvenile olive 601 rockfish. Depending on whether SGR was calculated from body mass or length, 602 correlation coefficients between Igf1 and SGR ranged from r = 0.29 to 0.43, and were 603 generally more robust when using mass-specific SGR measures than length-specific 604 measures. These results provide further evidence that nutritional limitation induces 605 hepatic *igfbp1a* and *igfbp1b* transcription in teleost fishes, reinforcing the proposed 606 functional role for these Igfbps in catabolism in fish (e.g., Shimizu and Dickhoff, 2017). 607 Taken as a whole, our finding of a positive correlation between individual 608 variation in SGR and plasma Igf1 supports the usefulness of measuring circulating Igf1 609 concentrations as an index for assessing relative growth in Sebastes rockfishes in 610 aquaculture or fishery management applications. Positive relationships between Igf1 and 611 SGR have now been established for many ray-finned fishes (reviewed by Beckman, 612 2011; Picha et al., 2008a), and measurements of Igf1 are beginning to be employed as a 613 non-lethal method for evaluating the growth ecology of wild fishes (e.g., Andrews et al., 614 2011; Ferriss et al., 2014; Wechter et al., 2017). The application of this endocrine

approach has the potential to provide crucial information on growth variation in wild
fishes both among local spatial areas and across short-term time periods. Such
information has been challenging to obtain via other methods for quantifying growth
rates in wild fishes, and Igf1 measurements could serve as an important conservation tool
for identifying and protecting habitats critical for supporting fish growth, ultimately
enabling more effective management of wild fish stocks.

621

622 Acknowledgements

623 This research supported by funding from California Sea Grant (R/HCME-15).

624 Additional support was provided to N. Hack by California State University's (CSU)

625 Council on Ocean Affairs, Science & Technology (COAST), by the Baker-Koob

626 Endowment, and by College Based Fee support from California Polytechnic State

627 University. We also acknowledge support from the NOAA IOOS program through

628 CeNCOOS for the ambient temperature data collected at the Cal Poly Pier (award to R.

629 Walter and D. Wendt, Cal Poly). Fish were collected under Scientific Collecting Permit #

630 SC-4793 from the California Department of Fish and Wildlife.

631 The authors thank Rob Brewster for assistance with tank construction, Tom

632 Moylan and Jason Felton for logistical assistance throughout the experiment, and Gianna

633 Milano, Meredith Beeson, Kasey Cordova, Frances Glaser, Dante Delaney, Lizzie de

634 Luca, Thomas Eldib, Ella Abelli-Amen, Christa Lam, Laura Manning, Niki Monjazeb,

635 Haley Perkins, Rachel Roorda, Emily Sroczynski, Nicholas Wall, Krista Lai, Mel Kasai,

- 636 Haley Gonzales, Marie Solis, Jade Wacker, Natalie Miller-Binkley, Sam Farrow, Peter
- 637 VanderBloomer, Miguel Jimenez for assistance with animal care. The authors also thank

- 638 Dean Wendt and two anonymous reviewers for thoughtful comments that improved this
- 639 manuscript.

640 **6. References**

641	
642	Ammann, A. J. 2004. SMURFs: standard monitoring units for the recruitment of
643	temperate reef fishes. J. Exp. Mar. Biol. Ecol. 299:135–154.
644	
645	Amaral, I.P.G., Johnston, I.A., 2011. Insulin-like growth factor (IGF) signalling and
646	genome-wide transcriptional regulation in fast muscle of zebrafish following a single-
647	satiating meal. J. Exp. Biol. 214, 2125–2139.
648	
649	Andrews, K.S., Beckman, B.R., Beaudreau, A.H., Larsen, D.A., Williams, G.D., Levin,
650	P.S., 2011. Suitability of insulin-like growth factor 1 (IGF1) as a measure of relative
651	growth rates in lingcod. Mar. Coast. Fish. 3, 250-260.
652	
653	Avson, F.G., de Jesus-Avson, E.G.T., Takemura, A., 2007, mRNA expression patterns
654	for GH, PRL, SL, TGF-I and IGF-II during altered feeding status in rabbitfish.
655	Siganus guttatus, Gen. Comp. Endocrinol, 150, 196–204.
656	r r
657	Azizi, S., Nematollahi, M.A., Amiri, B.M., Vélez, E.J., Salmerón, C., Chan, S.J.,
658	Navarro, I., Capilla, E., Gutiérrez, J., 2016. IGF-I and IGF-II effects on local IGF
659	system and signaling pathways in gilthead sea bream (Sparus aurata) cultured
660	myocytes. Gen. Comp. Endocrinol. 232, 7-16.
661	July Internet Internet Press
662	Baxter, R.C., 2015. Nuclear actions of insulin-like growth factor binding protein-3. Gene
663	569, 7-13.
664	
665	Beauloye, V., Willems, B., de Coninck, V., Frank, S.J., Edery, M., Thissen, J.P., 2002.
666	Impairment of liver GH receptor signaling by fasting. Endocrinology 143, 792–800.
667	
668	Beckman, B.R., 2011. Perspectives on concordant and discordant relations between
669	insulin-like growth factor 1 (IGF1) and growth in fishes. Gen. Comp. Endocrinol.
670	170, 233-252.
671	
672	Beckman, B.R., Fairgrieve, W., Cooper, K. a., Mahnken, C.V.W., Beamish, R.J., 2004a.
673	Evaluation of endocrine indices of growth in individual postsmolt coho salmon.
674	Trans. Am. Fish. Soc. 133, 1057–1067.
675	
676	Beckman, B.R., Shimizu, M., Gadberry, B.A., Cooper, K.A., 2004b. Response of the
677	somatotropic axis of juvenile coho salmon to alterations in plane of nutrition with an
678	analysis of the relationships among growth rate and circulating IGF-I and 41kDa
679	IGFBP. Gen. Comp. Endocrinol. 135, 334-344.
680	
681	Beckman, B.R., Larsen, D.A., Moriyama, S., Lee-Pawlak, B., Dickhoff, W.W., 1998.
682	Insulin-like growth factor-I and environmental modulation of growth during
683	smoltification of spring Chinook salmon (Oncorhynchus tshawytscha). Gen. Comp.
684	Endocrinol. 109, 325–335.
685	

686 687	Bergan-Roller, H.E., Sheridan, M.A., 2018. The growth hormone signaling system: insights into coordinating the anabolic and catabolic actions of growth hormone. Gen.
688	Comp. Endocrinol. 258, 119-133.
600	Rochlert G.W. Voklavich M.M. 1983 Effects of temperature ration and fish size on
690 691	growth of juvenile black rockfish, <i>Sebastes melanops</i> . Environ. Biol. Fish. 8, 17-28.
603	Rower N.I. Johnston, I.A. 2010. Transcriptional regulation of the ICE signaling
695 694	pathway by amino acids and insulin-like growth factors during myogenesis in Atlentic selmon, PLoS One 5, a11100
606	Attainte samon. PLos One 5, e11100.
607	Rower NI Li Y Taylor P. Johnston IA 2008 Switching to fact growth: the
698	insulin-like growth factor (IGF) system in skeletal muscle of Atlantic salmon. J. Exp.
700	B101. 211, 5859–5870.
700	Provos I. P. Phinns Costin S. K. Eujimoto C. K. Einersdottir I. E. Pasish A. M.
701 702 702	Björnsson, B. Th., McCormick, S.D., 2016. Hepatic <i>insulin-like growth-factor</i>
703	binding protein (igfbp) responses to food restriction in Atlantic salmon smolts. Gen.
704	Comp. Endocrinol. 233, 79-87.
705	
706	Breves, J.P., Hipsmark, C.K., Stougn, B.A., Seale, A.P., Flack, B.R., Moorman, B.P.,
707	Lerner, D.I., Grau, E.G., 2014. Nutritional status and growin normone regulate
708	Gen Comp. Endogrinol 207 66 73
709	$\mathbf{Gen. Comp. Endocrmon. 207, 60-75.}$
711	Butler A A LeBoith D 2001 Minireview: tissue specific versus generalized gene
712	targeting of the juft and juft genes and their roles in insulin-like growth factor
712	physiology Endocrinology 142 1685–1688
714	physiology. Endocrinology 142, 1003–1000.
715	Cameron C Moccia R Azevedo P A Leatherland LF 2007 Effect of diet and
716	ration on the relationship between plasma GH and IGF-1 concentrations in Arctic
717	charr. Salvelinus alpinus (L.). Aquacult, Res. 38, 877-886.
718	
719	Caselle, J.E., Kinlan, B.P., Warner, R.R., 2010. Temporal and spatial scales of influence
720	on nearshore fish settlement in the Southern California Bight. Bull. Mar. Sci. 86, 355-
721	385.
722	
723	Chan, S.S.Y., Schedlich, L.J., Twigg, S.M., Baxter, R.C., 2009. Inhibition of adipocyte
724	differentiation by insulin-like growth factor-binding protein-3. Am. J. Physiol.
725	Endocrinol. Metabol. 296, E654-E663.
726	
727	Chan, S.J., Plisetskaya, E.M., Urbinati, E., Jin, Y., Steiner, D.F., 1997. Expression of
728	multiple insulin and insulin-like growth factor receptor genes in salmon gill cartilage.
729	Proc. Natl. Acad. Sci. USA 94, 12446-12451.
730	

731	Chauvigné, F., Gabillard, J.C., Weil, C., Rescan, P.Y., 2003. Effect of refeeding on IGFI,
732	IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout
733	myotomal muscle. Gen. Comp. Endocrinol. 132, 209–215.
734	
735	Chen, W., Li, W., Zhang, Z., Jiang, X., Li, M., 2014. Cloning, molecular characterization
736	and expression analysis of insulin-like growth factor binding protein-2 (IGFBP-2)
737	cDNA in goldfish, Carassius auratus. Fish Physiol. Biochem. 40, 1669–1681.
738	
739	Clemmons, D.R., 2016. Role of IGF binding proteins in regulating metabolism. Trends
740	Endocrinol. Metabol. 27, 375-391.
741	
742	Clemmons, D.R., 2007. Modifying IGF1 activity: an approach to treat endocrine
743	disorders, atherosclerosis and cancer. Nat Rev Drug Discov. 6, 821–833.
744	
745	Daza, D.O., Sundström, G., Bergqvist, C.A., Duan, C., Larhammar, D., 2011. Evolution
746	of the insulin-like growth factor binding protein (IGFBP) family. Endocrinology 152,
747	2278-2289.
748	
749	Degger, B., Upton, Z., Soole, K., Collet, C., Richardson, N. 2000. Comparison of
/50	recombinant barramundi and human insulin-like growth factor (IGF)-1 in juvenile
/31	barramundi (<i>Lates calcarifer</i>): in vivo metabolic effects, association with circulating
152	IGF-binding proteins, and tissue distribution. Gen. Comp. Endocrinol. 117, 395–403.
133	Duan C. Plicetelesus $\mathbf{E} \mathbf{M}$ 1002 Nutritional regulation of insulin like growth factor \mathbf{I}
755	mDNA averaggion in column tissues. J. Endogrinol. 120, 242, 252
133	mikina expression in samon ussues. J. Endocrinol. 139, 243–232.
750	Duan C Pan H Gao S 2010 Insulin like growth factors (IGEs) IGE recentors and
758	IGE binding proteins: roles in skeletal muscle growth and differentiation. Gen. Comp.
750	Endocrinol 167 344 351
760	
761	Duan C Xu O 2005 Roles of insulin-like growth factor (IGE) hinding proteins in
762	regulating IGF actions Gen Comp Endocrinol 142, 44–52
763	regularing for actions, comp. Endoermon, 112, 11 62.
764	Duan, C., Ding, J., Li, W., Tsai, W., Pozios, K., 1999, Insulin-like growth factor binding
765	protein 2 is a growth inhibitory protein conserved in zebrafish. Proc. Natl. Acad. Sci.
766	USA 96. 15274-15279.
767	
768	Duan, C., 1997. The insulin-like growth factor system and its biological actions in fish.
769	Integr. Comp. Biol. 37, 491-503.
770	
771	Dupont, J., LeRoith, D., 2001. Insulin and insulin-like growth factor I receptors:
772	similarities and differences in signal transduction. Horm. Res. 55, 22–26.
773	
774	Eppler, E., Berishvili, G., Mazel, P., Caelers, A., Hwang, G., Maclean, N., Reinecke, M.,
775	2010. Distinct organ-specific up- and down-regulation of IGF-I and IGF-II mRNA in
776	various organs of a GH-overexpressing transgenic Nile tilapia. Transgen. Res. 19,
777	231-240.

778	
779	Escobar, S., Fuentes, E.N., Poblete, E., Valdés, J.A., Safian, D., Reyes, A.E., Alvarez,
/80	M., Molina, A., 2011. Molecular cloning of IGF-1 and IGF-1 receptor and their
/81	expression pattern in the Chilean flounder (<i>Paralichthys adspersus</i>). Comp. Biochem.
782	Physiol. B. 159, 140–147.
783	
784 785	Ferriss, B.E., Trudel, M., Beckman, B.R., 2014. Regional and inter-annual trends in marine growth of iuvenile salmon in coastal pelagic ecosystems of British Columbia
786	Canada. Mar. Ecol. Prog. Ser. 503, 247-261.
/0/	First CM De des D.C. 2002. Cell les setteres of the institution of the transition of
/88	Firth, S.M., Baxter, R.C., 2002. Cellular actions of the insulin-like growth factor binding
789	proteins. Endocr. Rev. 23, 824–854.
790	
791	Fox, B.K., Riley, L.G., Hirano, T., Grau, E.G. 2006. Effects of fasting on growth
792	hormone, growth hormone receptor, and insulin-like growth factor-I axis in seawater-
793	acclimated tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 148, 340-347
794	
795	Fox, B.K., Breves, J.P., Davis, L.K., Pierce, A.L., Hirano, T., Grau, E.G., 2010. Tissue-
796	specific regulation of the growth hormone/insulin-like growth factor axis during
797	fasting and re-feeding: importance of muscle expression of IGF-I and IGF-II mRNA
798	in the tilapia. Gen. Comp. Endocrinol. 166, 573-580.
799	
800	Franz, A-C., Faass, O., Köllner, B., Shved, N., Link, K., Casanova, A., Wenger, M.,
801	D'Cotta, H., Baroiller, J-F., Ullrich, O., Reinecke, M., Eppler, E., 2016. Endocrine
802	and local IGF-I in the bony fish immune system. Biology 5, 9.
803	
804	Fuentes, E.N., Einarsdottir, I.E., Valdes, J.A., Alvarez, M., Molina, A., Björnsson, B.T.,
805	2012. Inherent growth hormone resistance in the skeletal muscle of the fine flounder
806	is modulated by nutritional status and is characterized by high contents of truncated
807	GHR, impairment in the JAK2/STAT5 signaling pathway, and low IGF-I expression.
808	Endocrinology 153, 283–294.
809	
810	Fuentes, E.N., Valdés, J.A., Molina, A., Björnsson, B.T., 2013. Regulation of skeletal
811	muscle growth in fish by the growth hormone – insulin-like growth factor system.
812	Gen. Comp. Endocrinol. 192, 136-148.
813	
814	Gabillard, J.C., Kamangar, B.B., Montserrat, N., 2006. Coordinated regulation of the
815	GH/IGF system genes during refeeding in rainbow trout (Oncorhynchus mykiss). J.
816	Endocrinol. 191, 15–24.
817	
818	Gabillard, J.C., Weil, C., Rescan, P.Y., Navarro, I., Gutiérrez, J., Le Bail, P.Y., 2003.
819	Effects of environmental temperature on IGF1, IGF2, and IGF type I receptor
820	expression in rainbow trout (<i>Oncorhynchus mykiss</i>). Gen. Comp. Endocrinol. 133.
821	233–242.

823 824	Garcia de la Serrana, D., Macqueen, D.J., 2018. Insulin-like growth factor-binding proteins of teleost fishes. Front. Endocrinol. 9, 80.
825 826	Grav E.S. Kellev K.M. Law S. Tasi R. Young G. Bern H.A. 1992 Regulation of
827	hepatic growth hormone receptors in coho salmon (<i>Oncorhynchus kisutch</i>). Gen.
828	Comp. Endocrinol. 88, 243-252.
829	r. r
830	Greene, M.W., Chen, T.T., 1999. Characterization of teleost insulin receptor family
831	members: II. Developmental expression of insulin-like growth factor type I receptor
832	messenger RNAs in rainbow trout. Gen. Comp. Endocrinol. 115, 270-281.
833	
834	Herrington, J., Smit, L.S., Schwartz, J., Carter-Su, C., 2000. The role of STAT proteins in
835	growth hormone signaling. Oncogene 19, 2585–2597.
836	
837	Hevrøy, E.M., Azpeleta, C., Shimizu, M., Lanzén, A., Kaiya, H., Espe, M., Olsvik, P.A.,
838	2011. Effects of short-term starvation on ghrelin, GH-IGF system, and IGF-binding
839	proteins in Atlantic salmon. Fish Physiol. Biochem. 37, 217–232.
840	
841	Hevrøy, E.M., Tipsmark, C.K., Remo, S.C., Hansen, T., Fukuda, M., Torgersen, T.,
842	Vikeså, V., Olsvik, P.A., Waagbo, R., Shimizu, M., 2015. Role of the GH-IGF-1
843	system in Atlantic salmon and rainbow trout postsmolts at elevated water
844	temperature. Comp. Biochem. Physiol. A 188, 127-138.
845	Huong SS Ling TV Teeng WE Huong VH Teng EM Leel SM Huong IS
040 047	nualig, S.S., Lilig, 1-1., Iselig, W-F., nualig, 1-n., Ialig, F-M., Leai, S.M., nualig, J.S.,
84/ 8/8	2003. Cellular growin inhibition by IGFBP-3 and IGF-p1 requires LKP-1. FASEB J.
040 8/10	17, 2008-2081.
850	Hyde LR Vetter RD 2007 The origin evolution and diversification of rockfishes of
851	the genus Sebastes (Cuvier) Mol Phylogen Evol 44 790–811
852	the genus sebustes (Edvici). Mol. 1 hylogen. Evol. 11, 790-011.
853	Inagaki, T., Dutchak, P., Zhao, G., Ding, X., Gautron, L., Parameswara, V., Li, Y., Goetz,
854	R., Mohammadi, M., Esser, V., et al., 2007. Endocrine regulation of the fasting
855	response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell
856	Metabol. 5, 415–425.
857	
858	Inagaki, T., Lin, V.Y., Goetz, R., Mohammadi, M., Mangelsdorf, D.J., Kliewer, S.A.,
859	2008. Inhibition of growth hormone signaling by the fasting-induced hormone
860	FGF21. Cell Metabol. 8, 77-83.
861	
862	Jogie-Brahim, S., Feldman, D., Oh, Y., 2009. Unraveling insulin-like growth factor
863	binding protein-3 actions in human disease. Endocr. Rev. 30, 417-437.
864	
865	Kamangar, B.B., Gabillard, J.C., Bobe, J., 2006. Insulin-like growth factor-binding
866	protein (IGFBP)-1, -2, -3, -4, -5, and -6 and IGFBP-related protein 1 during rainbow
867	trout postvitellogenesis and oocyte maturation: molecular characterization, expression
808	profiles, and hormonal regulation. Endocrinology 147, 2399–2410.

869	
870	Kamimura, Y., Mizuno, K., Noda, T., Hirakawa, K., Tamaki, H., Shoji, J., 2012.
871	Validation of daily periodicity of otolith increment formation and application for
872	analysis of early growth of wild juvenile black rockfish <i>Sebastes cheni</i> . Aquacult. Sci.
873	60, 413-416.
874	
875	Kaneko, N., Taniyamam, N., Inatani, Y., Nagano, Y., Fujiwara, M., Torao, M.,
876	Miyakoshi, Y., 2015. Circulating insulin-like growth factor I in juvenile chum
877	salmon: relationship with growth rate and changes during downstream and coastal
878	migration in northeastern Hokkaido, Japan. Fish Physiol. Biochem. 41, 991-1003.
879	
880	Kawaguchi, K., Kaneko, N., Fukuda, M., Nakano, Y., Kimura, S., Hara, A., Shimizu, M.,
881	2013. Responses of insulin-like growth factor (IGF)-I and two IGF-binding protein-1
882	subtypes to fasting and refeeding, and their relationships with individual growth rates
883	in yearling masu salmon (Oncorhynchus masou). Comp. Biochem. Physiol. A 165,
884	191-198.
885	
886	Kawanago, M., Takemura, S., Ishizuka, R., Shioya, I., 2014. Plasma components and
887	hepatic insulin-like growth factor expression indicate nutritional status in yellowtail
888	Seriola quinqueradiata. N. Am. J. Aquacult. 76, 143–152.
889	
890	Kelley, K.M., Haigwood, J.T., Perez, M., Galima, M.M., 2001. Serum insulin-like
891	growth factor binding proteins (IGFBPs) as markers for anabolic/catabolic condition
892	in fishes. Comp. Biochem. Physiol. B 129, 229-236.
893	
894	Lambert, Y., Dutil, J.D., 1997. Can simple condition indices be used to monitor and
895	quantify seasonal changes in the energy reserves of Atlantic cod Gadus morhua? Can.
896	J. Fish. Aquat. Sci. 54, 104-112.
897	
898	Lankford, S.E., Weber, G.M., 2006. Associations between plasma growth hormone,
899	insulin-like growth factor-I, and cortisol with stress responsiveness and growth
900	performance in a selective breeding program for rainbow trout. N. Am. J. Aquacult.
901	68, 151–159.
902	
903	Larsen, D., Beckman, B., Walton, D., 2001. The effect of low temperature and fasting
904	during the winter on metabolic stores and endocrine physiology (insulin, insulin-like
905	growth factor-I, and thyroxine) of coho salmon, Oncorhynchus kisutch. Gen. Comp.
906	Endocrinol. 123, 308–323.
907	
908	Lee, S.M., 2001. Review of the lipid and essential fatty acid requirements of rockfish
909	(Sebastes schlegeli). Aquacult. Res. 32, 8-17.
910	
911	Le Roith, D., Bondy, C., Yakar, S., Liu, J., Butler, A., 2001. The somatomedin
912	hypothesis: 2001. Endocr. Rev. 22, 53–74.
913	

914 915 916 917	Leung, L.Y., Kwong, A.K., Man, A.K., Woo, N.Y., 2008. Direct actions of cortisol, thyroxine and growth hormone on IGF-I mRNA expression in sea bream hepatocytes. Comp. Biochem. Physiol. A 151, 705–710.
918 919 920 921	Lugert, V., Thaller, G., Tetens, J., Schulz, C., Krieter, J., 2014. A review on fish growth calculation: multiple functions in fish production and their specific application. Rev. Aquacult. 6, 1-13.
922 923 924 925	MacQueen, D.J., Kristjánsson, B.K., Paxton, C.G.M., Vieira, V.L.A., Johnston, I.A., 2011. The parallel evolution of dwarfism in Arctic charr is accompanied by adaptive divergence in mTOR-pathway gene expression. Mol. Ecol. 20, 3167–3184.
926 927 928 929	Maures, T., Chan, S.J., Xu, B., Sun, H., Ding, J., Duan, C., 2002. Structural, biochemical and expression analysis of two distinct insulin-like growth factor I receptors and their ligands in zebrafish. Endocrinology 143, 1858–1871.
930 931 932 933	Miller, R.R., Field, J.C., Santora, J.A., Schroeder, I.D., Huff, D.D., Key, M., Pearson, D.E., MacCall, A.D., 2014. A spatially distinct history of the development of California groundfish fisheries. PLoS One 9, e99758.
934 935 936 937	Mingarro, M., Vega-Rubín De Celis, S., Astola, A., Pendón, C., Valdivia, M.M., Pérez- Sánchez, J., 2002. Endocrine mediators of seasonal growth in gilthead sea bream (<i>Sparus aurata</i>): The growth hormone and somatolactin paradigm. Gen. Comp. Endocrinol. 128, 102–111.
939 939 940 941 942 942	Montserrat, N., Gabillard, J.C., Capilla, E., Navarro, M.I., Gutiérrez, J., 2007. Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (<i>Oncorhynchus mykiss</i>). Gen. Comp. Endocrinol. 150, 462–472.
943 944 945 946 947	Norbeck, L.A., Kittilson, J.D., Sheridan, M.A., 2007. Resolving the growth-promoting and metabolic effects of growth hormone: differential regulation of GH-IGF-I system components. Gen. Comp. Endocrinol. 151, 332-341.
947 948 949 950	Parker, S.J., Berkeley, S.A., Golden, J.T., Gunderson, D.R., Heifetz, J., Hixon, M.A., 2000. Management of Pacific rockfish. Fisheries 25, 22-30.
951 952 953 954	Pedroso, F.L., de Jesus-Ayson, E.G., Cortado, H.H., Hyodo, S., Ayson, F.G., 2006. Changes in mRNA expression of grouper (<i>Epinephelus coioides</i>) growth hormone and insulin-like growth factor I in response to nutritional status. Gen. Comp. Endocrinol. 145, 237–246.
956 957 958 959	Pedroso, F.L., Fukada, H., Masumoto, T., 2009. Molecular characterization, tissue distribution patterns and nutritional regulation of IGFBP-1, -2, -3 and -5 in yellowtail, <i>Seriola quinqueradiata</i> . Gen. Comp. Endocrinol. 161, 344–353.

960 961	Pérez-Sánchez, J., Le Bail, P.Y., 1999. Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture 177, 117-128.
962	
963	Pérez-Sánchez, J., Martí-Palanca, H., Kaushik, S.J., 1995. Ration size and protein intake
964 965	affect circulating growth hormone concentrations, hepatic growth hormone binding and plasma insulin-like growth factor-Limmunoreactivity in a marine teleost, the
966	gilthead sea bream (<i>Sparus aurata</i>) I Nutrition 125 546-552
967	Shaload Sea orbani (Sparas aaraa), or raannon 120, o to 002.
968	Pérez-Sánchez, J., Martí-Palanca, H., LeBail, P.Y., 1994, Homologous growth hormone
969	(GH) binding in gilthead sea bream (<i>Sparus aurata</i>): effect of fastig and refeeding on
970	hepatic GH-binding and plasma somatomedin-like immunoreactivity. J. Fish Biol. 44,
971	287-301.
972	
973	Peterson, B.C., Bilodeau-Burgeois, A.L., Small, B.C., 2009. Response of the somatotropic axis
974	to alterations in feed intake of channel catfish (<i>Ictalurus punctatus</i>). Comp. Biochem.
975	Physiol. A 153, 457-463.
976	
977	Peterson, B.C., Waldbieser, G.C., 2009. Effects of fasting on IGF-I, IGF-II, and IGF-
978	binding protein mRNA concentrations in channel catfish (Ictalurus punctatus).
979	Domest. Anim. Endocrinol. 37, 74-83.
980	
981	Picha, M.E., Turano, M.J., Beckman, B.R., Borski, R.J., 2008a. Endocrine biomarkers of
982	growth and applications to aquaculture: a minireview of growth hormone, insulin-like
983	growth factor (IGF)- I, and IGF-binding proteins as potential growth indicators in
984	fish. N. Am. J. Aquacult. 70, 196–211.
985	
986	Picha, M.E., Turano, M.J., Tipsmark, C.K., Borski, R.J., 2008b. Regulation of endocrine
987	and paracrine sources of Igfs and Gh receptor during compensatory growth in hybrid
988	striped bass (Morone chrysops X Morone saxatilis). J. Endocrinol. 199, 81-94.
989	
990	Pierce, A.L., Shimizu, M., Beckman, B.R., Baker, D.M., Dickhoff, W.W., 2005. Time
991	course of the GH/IGF axis response to fasting and increased ration in chinook salmon
992	(<i>Oncorhynchus tshawytscha</i>). Gen. Comp. Endocrinol. 140, 192–202. [
993	D. D. D.M. I.L. 11 I. D. M. M. M. M. D. W. D. T. D. T. D. T. L. M.
994	Power, D.M., Llewellyn, L., Faustino, M., Nowell, M.A., Bjornsson, B. In., Einarsdottir,
995	I.E., Canario, A.V.M., Sweeney, G.E., 2001. Invroid normones in growth and
996	development of fish. Comp. Biochem. Physiol. C 130, 447-459.
997	Deindl KM Sharidan MA 2012 Devictorylation of the superth borners
998	inculin like growth factor system in fish and other vertebrates. Comp. Discharge
999 1000	Insumi-like growin factor system in fish and other vertebrates. Comp. Blochem.
1000	riiysioi. A 105, 251–245.
1001	Painacka M 2010 Influences of the environment on the endoering and nervering fich
1002	growth hormone insulin like growth factor I system I Fish Riol 76 1222 1254
1003	g_{10} with normonic – mouth-inke g_{10} with ractor-1 system. J. 1481 D101. 70, 1255-1254.
1004	

1005 1006 1007 1008	Reinecke, M., Björnsson, B.Th., Dickhoff, W.W., McCormick, S.D., Navarro, I., Power, D.M., Gutiérrez, J., 2005. Growth hormone and insulin-like growth factors in fish: where we are and where to go. Gen. Comp. Endocrinol. 142, 20-24.
1008 1009 1010 1011 1012	Ren, H., Yin, P., Duan, C., 2008. IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop. J. Cell Biol. 182, 979–991.
1012 1013 1014 1015	Ricker, W.E., 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Canada 191, 1-382.
1013 1016 1017 1018 1019	Sadoul, B., Vijayan, M.M., 2016. Stress and growth, in: Schreck, C.B., Tort, L., Farrell, A.P., Brauner, C.J. (Eds.), Biology of Stress in Fish. Elsevier, Inc., London, UK, pp. 168-207.
1019 1020 1021 1022 1023 1024	Saera-Vila, A., Calduch-Giner, J.A., Perez-Sanchez, J., 2005. Duplication of growth hormone receptor (GHR) in fish genome: gene organization and transcriptional regulation of GHR type I and II in gilthead sea bream (<i>Sparus aurata</i>). Gen. Comp. Endocrinol. 142, 193-203.
1025 1026 1027 1028	Safian, D., Fuentes, E.N., Valdés, J.A., Molina, A., 2012. Dynamic transcriptional regulation of autocrine/paracrine igfbp1, 2, 3, 4, 5, and 6 in the skeletal muscle of the fine flounder during different nutritional statuses. J. Endocrinol. 214, 95–108.
1029 1030 1031 1032 1033	Salih, D.A.M., Tripathi, G., Holding, C., Szestak, T.A.M., Gonzalez, M.I., Carter, E.J., Cobb, L.J., Eisemann, J.E., Pell, J.M., 2004. Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. Proc. Natl. Acad. Sci. U. S. A. 101, 4314–9.
1034 1035 1036 1037	Schmid, A.C., Lutz, I., Kloas, W., Reinecke, M., 2003. Thyroid hormone stimulates hepatic IGF-I mRNA expression in a bony fish, the tilapia <i>Oreochromis</i> <i>mossambicus</i> , in vitro and in vivo. Gen. Comp. Endocrinol. 130, 129-134.
1038 1039 1040	Sheridan, M.A., Hagemeister, A.L., 2010. Somatostatin and somatostatin receptors in fish growth. Gen. Comp. Endocrinol. 167, 360–365
1041 1042 1043 1044	Shimizu, M., Swanson, P., Fukada, H., Hara, A., Dickhoff, W.W., 2000. Comparison of extraction methods and assay validation for salmon insulin-like growth factor-1 using commercially available components. Gen. Comp. Endocrinol. 119, 26-36.
1045 1046 1047 1048 1049	Shimizu, M., Beckman, B.R., Hara, A., Dickhoff, W.W., 2006. Measurement of circulating salmon IGF binding protein-1: assay development, response to feeding ration and temperature, and relation to growth parameters. J. Endocrinol. 188, 101–110.

1050 1051	Shimizu, M., Cooper, K.A., Dickhoff, W.W., Beckman, B.R., 2009. Postprandial changes in plasma growth hormone, insulin, insulin-like growth factor (IGF)-I, and IGF-
1052	binding proteins in coho salmon fasted for varying periods. Am. J. Physiol. Regul.
1053	Integr Comp Physiol 297, R352–R361
1055	
1055	Shimizu, M., Dickhoff, W.W., 2017. Circulating insulin-like growth factor binding
1056	proteins in fish: their identities and physiological regulation. Gen. Comp. Endocrinol.
1057	252, 150-161.
1058	
1059	Small, B.C., Murdock, C.A., Waldbieser, G.C., Peterson, B.C., 2006. Reduction in
1060 1061	channel catfish hepatic growth hormone receptor expression in response to food deprivation and exogenous cortisol. Domest. Anim. Endocrinol. 31, 340-356.
1062	
1063 1064	Son, M-H., Park, M-W., Lim, H.K., 2014. An economic analysis of black rockfish, Sebastes schlegeli in the marine floating cage culture. J. Fish, Bus, Admin, 45, 95-
1065	107.
1060	Terova G. Timoldi S. Chini V. Goranati P. Bernardini G. Saroglia M. 2007
1067	Cloning and expression analysis of insulin-like growth factor I and II in liver and
1060	muscle of sea bass (<i>Dicentrarchus labrar</i> I) during long-term fasting and refeeding
1070	I Fish Biol 70 219-233
1070	J . H 50. D 101. 70, 217 255.
1072	Tsang, W.N., Chaillé, P.M., Collins, P.M., 2007, Growth and reproductive performance
1073	in cultured nearshore rockfish (<i>Sebastes</i> spp.). Aquaculture 266, 236-245.
1074	
1075	Uchida, K., Kajimura, S., Riley, L.G., Hirano, T., Aida, K., Grau, E.G., 2003. Effects of
1076	fasting on growth hormone/ insulin-like growth factor I axis in the tilapia,
1077	Oreochromis mossambicus. Comp. Biochem. Physiol. A. 134, 429-439.
1078	
1079	Vera Cruz, E.M., Brown, C.L., Luckenbach, J.A., Picha, M.E., Bolivar, R.B., Borski,
1080	R.J., 2006. Insulin-like growth factor-I cDNA cloning, gene expression and potential
1081	use as a growth rate indicator in Nile tilapia, <i>Oreochromis niloticus</i> . Aquaculture 251,
1082	585–595.
1083	
1084	VenTresca, D.A., Houk, J.L., Paddack, M.J., Gingras, M.L., 1996. Early life-history
1085	studies of nearshore rockfishes and lingcod off Central California, 1987-92. Mar. Res.
1086	Div. Admin. Rep. 96-4, California Dept. Fish Game, Monterey, CA.
108/	
1088	Wechter, M.E., Beckman, B.R., Andrews, A.G., Beaudreau, A.H., McPhee, M.V., 2017.
1089	Growth and condition of juvenile chum and pink salon in the northeastern Bering Sea.
1090	Deep Sea Res. II 135, 145-155.
1091	Willingon D. L. Douton M. Woolcott H. Longland D. Coursehon J.E. 2006 Effects of
1092	witkinson, K.J., Porter, IVI., woolcou, H., Longiand, K., Carragner, J.F., 2006. Effects of
1093	aquaculture related stressors and nutritional restriction on circulating growth factors
1094	(On, IOF-I and IOF-II) III Additic samion and raindow trout. Comp. Blochem.
1093	1 HYSIOI. A 143, 214-224.

1096	
1097	Won, E.T., Borski, R.J., 2013. Endocrine regulation of compensatory growth in fish.
1098	Front. Endocrinol. 4, 74.
1099	
1100	Wood, A.W., Duan, C.M., Bern, H.A., 2005. Insulin-like growth factor signaling in fish.
1101	In: International Review of Cytology – A Survey of Cell Biology, 243, 215–285.
1102	
1103	Zheng, GD., Zhou, CX., Lin, ST., Chen, J., Jiang, XY., Zou, SM., 2017. Two
1104	grass carp (Ctenopharyngodon idella) insulin-like growth factor-binding protein 5
1105	genes exhibit different yet conserved functions in development and growth. Comp.
1106	Biochem. Physiol. B. 204, 69–76.
1107	

1108 Figure Legends

1114

1120

1125

1142

- Figure 1. Changes in the relationship between standard length (mm) and body mass (g)
 for olive rockfish in the high ration (4% wet wt.) and low ration (1% wet wt.)
 treatments between day 0 (triangles) and day 98 (circles) of the 98 d experimental
 period.
- Figure 2. Mean (±SEM) values of (A) mass and (B) standard length, and (C) condition
 factor for rockfish reared under high ration (4% wet wt.) or low ration (1% wet wt.)
 conditions. Mass and body condition factor differed between treatments beginning on
 day 24, while length differed beginning on day 48. Asterisks indicate difference
 between treatments on that sampling day.
- Figure 3. High (4%) ration fish (dark gray bars, n = 25) showed a greater (A) massspecific and (B) length-specific somatic growth rate (SGR) than low (1%) ration fish
 (light gray bars, n = 26). Bars represent group means (±SEM) of percent change per
 day with p-values from student t-tests.

1126Figure 4. Comparison of mean (\pm SEM) plasma Igf1 concentrations between high ration1127(4% wet wt.) and low ration (1% wet wt.) treatments. Rockfish in the high ration1128treatment (n = 24) had significantly higher plasma Igf1 than low ration fish (n = 26).

Figure 5. Individual (A) mass-specific somatic growth rate (SGR) and (B) lengthspecific SGR both correlated positively to plasma Igf1 concentration. SGR values shown are calculated from changes in body size across the entire experimental period (day 0 to 98). Lines represent Pearson correlation relationships for fish from both ration treatments combined (n = 50).

- 11351136Figure 6. Relative hepatic mRNA levels from the high and low ration treatments. (A)1137Levels of *igf1* and *igf2* did not differ between treatments. (B) Transcripts encoding Igf1138binding proteins *igfbp1a* and *igfbp1b* were expressed at higher relative levels in1139rockfish reared under the low (1%) ration treatment. Data are shown as mean (±SEM)1140values. Lines indicate significant differences between treatments (Student's t-test: *P1141< 0.05, **P < 0.01, ***P < 0.0001).</th>
- 1143Figure 7. Individual variation in liver igfl mRNA levels correlated positively with1144plasma Igf1 concentrations. Correlation line shows the relationship for all fish1145combined (n = 50). Ration treatments are shown for reference.
- 11461147**Figure 8.** Relative mRNA levels for *igf1*, *igf2*, and several genes encoding Igfbps in1148skeletal muscle of rockfish from the high (4%) and low (1%) ration treatments. (A)1149Transcript abundance for *igf1*, but not *igf2*, was higher in fish from the high ration1150treatment. (B) Only *igfbp5a* and *igfbp5b* mRNA levels in muscle differed between the1151two ration treatment groups. Data are plotted as mean (±SEM) values, and lines1152indicate significant differences between treatments (Student's t-test: *P < 0.05, **P <</th>11530.01, ***P < 0.0001).</th>

Figure 9. Correlation between plasma Igf1 and relative levels of mRNAs encoding *igf1*

- in skeletal muscle. The line represents the Pearson correlation relationship for all fish combined (n = 50). Treatment groups shown for reference.

	Day 0 – 98	24 - 98	48 - 98	75 - 98	91 – 98
Mass SGR	r = 0.4156	r = 0.4171	r = 0.4243	r = 0.4266	r = 0.2361
	p = 0.0027	p = 0.0026	p = 0.0021	p = 0.0020	p = 0.0988
Length SGR	r = 0.3358	r = 0.3181	r = 0.3135	r = 0.2895	r = 0.3868
	p = 0.0171	p = 0.0244	p = 0.0267	p = 0.0414	p = 0.0150

Table 1. Mass and length-specific somatic growth rate (SGR) correlations to plasma Igf1 calculated across different time intervals.

Figure 3

Figure 8

